On the Extrinsic Principal Directions and Curvatures of Lagrangian Submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Extrinsic Topology of Lagrangian Submanifolds

We investigate the extrinsic topology of Lagrangian submanifolds and of their submanifolds in closed symplectic manifolds using Floer homological methods. The first result asserts that the homology class of a displaceable monotone Lagrangian submanifold vanishes in the homology of the ambient symplectic manifold. Combining this with spectral invariants we provide a new mechanism for proving Lag...

متن کامل

Extrinsic Isoperimetric Analysis on Submanifolds with Curvatures Bounded from Below

We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial part of the mean curvature vector field and on the radial part of the intrinsic unit normals at the boundaries of the extrinsic spheres, respectiv...

متن کامل

Extrinsic sphere and totally umbilical submanifolds in Finsler spaces

‎Based on a definition for circle in Finsler space‎, ‎recently proposed by one of the present authors and Z‎. ‎Shen‎, ‎a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field‎, ‎if and only if its circles coincide with circles of the ambient...

متن کامل

On the Lifts of Minimal Lagrangian Submanifolds

Bryant and Salamon constructed metrics with holonomy G2 and Spin(7) on spin bundles of 3-dimensional space forms, and spin bundles and bundles of anti-self-dual 2-forms on self-dual Einstein 4-manifolds [BrS]. Since, apart from holonomy, the construction of integrable G2(respectively Spin(7)) structures amounts to finding differential 3(4)forms of generic type on 7(8) manifolds satisfying appro...

متن کامل

Dirac operators on Lagrangian submanifolds

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2020

ISSN: 2227-7390

DOI: 10.3390/math8091533